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A Motivating Example

Statistical learning

» Collect training samples

v

(introduce an implicit stochastic assumption on the model
generating the data)

Solve an optimization problem (e.g., ERM, least—squares,
SVM, etc.)

Deploy the solution (i.e., classifier, regressor)

v

v
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A Motivating Example
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A Motivating Example

Online learning
» Define a set of experts
> Learn from a stream of data
» Solve an optimization problem (e.g., find the optimal expert)

» Predict as you learn
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A Motivating Example

Question: which route should we take?
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A Motivating Example

Question: which route should we take?

Problem: each day we obtain a limited feedback: traveling time
of the chosen route
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A Motivating Example

Question: which route should we take?

Problem: each day we obtain a limited feedback: traveling time
of the chosen route

Results: if we do not repeatedly try different options we cannot
learn.
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A Motivating Example

Question: which route should we take?

Problem: each day we obtain a limited feedback: traveling time
of the chosen route

Results: if we do not repeatedly try different options we cannot
learn.

Solution: trade off between optimization and learning.
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Outline

Bandits with Small Set of Arms
Bandits with Large Set of Arms

Conclusions

A. LAZARIC — Multi-armed Bandit Problems



Bandits with Small Set of Arms

Outline

Bandits with Small Set of Arms
The Stochastic Multi-armed Bandit Problem
The Non—Stochastic Multi-armed Bandit Problem
Connections to Game Theory
Other Stochastic Multi-armed Bandit Problems

Bandits with Large Set of Arms

Conclusions
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Bandits with Small Set of Arms

The Multi—armed Bandit Game

The learner has i = 1,..., N arms (options, experts, ...)

Ateachround t=1,...,n

. brezia~
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Bandits with Small Set of Arms

The Multi—armed Bandit Game

The learner has i = 1,..., N arms (options, experts, ...)

Ateachround t=1,...,n
» At the same time
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Bandits with Small Set of Arms

The Multi—armed Bandit Game

The learner has i = 1,..., N arms (options, experts, ...)

Ateachround t=1,...,n
» At the same time

» The environment chooses a vector of rewards {X; }V
» The learner chooses an arm /;
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Bandits with Small Set of Arms

The Multi—armed Bandit Game

The learner has i = 1,..., N arms (options, experts, ...)

Ateachround t=1,...,n
» At the same time

» The environment chooses a vector of rewards {X; }V
» The learner chooses an arm /;

» The learner receives a reward X, ;
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Bandits with Small Set of Arms

The Multi—armed Bandit Game

The learner has i = 1,..., N arms (options, experts, ...)

Ateachround t=1,...,n
» At the same time

» The environment chooses a vector of rewards {X; }V
» The learner chooses an arm /;

» The learner receives a reward X, ;

» The environment does not reveal the rewards of the other
arms

A. LAZARIC — Multi-armed Bandit Problems



Bandits with Small Set of Arms

The Multi-armed Bandit Game (cont'd)

The regret

. brezia~
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Bandits with Small Set of Arms

The Multi-armed Bandit Game (cont'd)

The regret

Rn(A) = _max E[ZX, t} — E[Zn:X/t,t]
t=1

The expectation summarizes any possible source of randomness (either in
X or in the algorithm)

. Clreia—
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Bandits with Small Set of Arms

The Exploration—Exploitation Lemma

Problem 1: The environment does not reveal the rewards of the
arms not pulled by the learner
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Bandits with Small Set of Arms

The Exploration—Exploitation Lemma

Problem 1: The environment does not reveal the rewards of the
arms not pulled by the learner

= the learner should gain information by repeatedly pulling all the
arms

. Clreia—
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Bandits with Small Set of Arms

The Exploration—Exploitation Lemma

Problem 1: The environment does not reveal the rewards of the
arms not pulled by the learner

= the learner should gain information by repeatedly pulling all the
arms

Problem 2: Whenever the learner pulls a bad arm, it suffers some
regret
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Bandits with Small Set of Arms

The Exploration—Exploitation Lemma

Problem 1: The environment does not reveal the rewards of the
arms not pulled by the learner

= the learner should gain information by repeatedly pulling all the
arms

Problem 2: Whenever the learner pulls a bad arm, it suffers some
regret

= the learner should reduce the regret by repeatedly pulling the
best arm

. Clreia—
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Bandits with Small Set of Arms

The Exploration—Exploitation Lemma

Problem 1: The environment does not reveal the rewards of the
arms not pulled by the learner

= the learner should gain information by repeatedly pulling all the
arms

Problem 2: Whenever the learner pulls a bad arm, it suffers some
regret

=> the learner should reduce the regret by repeatedly pulling the
best arm

Challenge: The learner should solve two opposite problems!
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Bandits with Small Set of Arms

The Exploration—Exploitation Lemma

Problem 1: The environment does not reveal the rewards of the
arms not pulled by the learner

= the learner should gain information by repeatedly pulling all the
arms = exploration

Problem 2: Whenever the learner pulls a bad arm, it suffers some
regret

=> the learner should reduce the regret by repeatedly pulling the
best arm

Challenge: The learner should solve two opposite problems!
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Bandits with Small Set of Arms

The Exploration—Exploitation Lemma

Problem 1: The environment does not reveal the rewards of the
arms not pulled by the learner

= the learner should gain information by repeatedly pulling all the
arms = exploration

Problem 2: Whenever the learner pulls a bad arm, it suffers some
regret

=> the learner should reduce the regret by repeatedly pulling the
best arm = exploitation

Challenge: The learner should solve two opposite problems!
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A. LAZARIC — Multi-armed Bandit Problems



Bandits with Small Set of Arms

The Exploration—Exploitation Lemma

Problem 1: The environment does not reveal the rewards of the
arms not pulled by the learner

= the learner should gain information by repeatedly pulling all the
arms = exploration

Problem 2: Whenever the learner pulls a bad arm, it suffers some
regret

= the learner should reduce the regret by repeatedly pulling the
best arm = exploitation

Challenge: The learner should solve the exploration-exploitation
dilemmal
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Bandits with Small Set of Arms

The Multi-armed Bandit Game (cont'd)

Examples
» Packet routing

Clinical trials

v

v

Web advertising

v

Computer games

v

Resource mining
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

Outline

Bandits with Small Set of Arms
The Stochastic Multi-armed Bandit Problem
The Non—Stochastic Multi-armed Bandit Problem
Connections to Game Theory
Other Stochastic Multi-armed Bandit Problems

Bandits with Large Set of Arms

Conclusions
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

The Stochastic Multi—-armed Bandit Problem

The environment is stochastic

» Each arm has a distribution v; bounded in [0, 1] and

characterized by an expected value ;
» The rewards are i.i.d. Xj; ~ v;

A. LAZARIC — Multi-armed Bandit Problems



Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

The Stochastic Multi-armed Bandit Problem (cont'd)

Notation

» Number of times arm i has been pulled after n rounds

Tin=> T{lt=1i}
t=1

. brezia~
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

The Stochastic Multi-armed Bandit Problem (cont'd)

Notation

» Number of times arm i has been pulled after n rounds

n
Tin=) I{l=1i}
t=1

> Regret

. brezia~
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

The Stochastic Multi-armed Bandit Problem (cont'd)

Notation

» Number of times arm i has been pulled after n rounds

Tin=Y I{l=i}
t=1

> Regret
Rn(A) = _max (npi) E[ZX&, }

. brezia~

A. LAZARIC — Multi—armed Bandit Problems April 2-15, 2012 -



Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

The Stochastic Multi-armed Bandit Problem (cont'd)

Notation

» Number of times arm i has been pulled after n rounds

Tin=> I{lt=1i}
t=1

> Regret

Rn(A) = _max Z E[T; n)i

. brezia~
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

The Stochastic Multi-armed Bandit Problem (cont'd)

Notation

» Number of times arm i has been pulled after n rounds
Tin=> I{lt=1i}
=1

> Regret

N
Ra(A) = nptj- = > E[Tinlpi
i=1

. brezia~
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

The Stochastic Multi-armed Bandit Problem (cont'd)

Notation

» Number of times arm i has been pulled after n rounds
n
Tin= T{l=i}
t=1

> Regret

Ra(A) =D E[Tin) (1 — i)
i£i*

. brezia~

A. LAZARIC — Multi—armed Bandit Problems April 2-15, 2012 -



Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

The Stochastic Multi-armed Bandit Problem (cont'd)

Notation

» Number of times arm i has been pulled after n rounds
n
Tin= T{l=i}
t=1

> Regret

Ra(A) =D E[T;A]A
i£i*

. brezia~
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

The Stochastic Multi-armed Bandit Problem (cont'd)

Notation

» Number of times arm i has been pulled after n rounds
n
Tin=Y I{l=i}
t=1

> Regret

Ra(A) =D E[T;A]A
i#i*
> Gap Aj = pjx — pi

. brezia~

A. LAZARIC — Multi—armed Bandit Problems April 2-15, 2012 -



Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

The Stochastic Multi-armed Bandit Problem (cont'd)

Ra(A) = E[TnA
i#i*
=- we only need to study the expected number of pulls of the
suboptimal arms

. brezia~
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

The Stochastic Multi-armed Bandit Problem (cont'd)

Optimism in Face of Uncertainty Learning (OFUL)

Whenever we are uncertain about the outcome of an arm, we
consider the best possible world and choose the best arm.

. brezia~
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

The Stochastic Multi-armed Bandit Problem (cont'd)

Optimism in Face of Uncertainty Learning (OFUL)

Whenever we are uncertain about the outcome of an arm, we
consider the best possible world and choose the best arm.

Why it works:
> If the best possible world is correct = no regret
> If the best possible world is wrong = the reduction in the
uncertainty is maximized

-
brzia—
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

The Stochastic Multi-armed Bandit Problem (cont'd)

] 2 4 6 94 0 2 6
Rewards Rewards
pulls = 100 pulls = 200
1
12 25|
10
2]
8|
1.5]
6
4 1
2| 0.5
0 2 % 2 0 2 4 6
Rewards Rewards
pulls = 50 pulls = 20

. &’7»01’4/-
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

The Stochastic Multi-armed Bandit Problem (cont'd)

Optimism in face of uncertainty

0 2 0 2
Rawards Rewards

2.5

0 2 0
Rewards Rewards

rmed Bandit Problems



Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

The Upper—Confidence Bound (UCB) Algorithm

The idea
2
1.5¢
| }
- 05 %
g ®
(0]
c 0 i
-0.5
1t
-15 I I I I
1(10) 2 (73) 3(3) 4 (23)
Arms
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

The Upper—Confidence Bound (UCB) Algorithm

Show time!

. brezia~

A. LAZARIC — Multi—armed Bandit Problems April 2-15, 2012 -



Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

The Upper—Confidence Bound (UCB) Algorithm (cont'd)

At eachround t=1,...,n

» Compute the score of each arm i
B; = (optimistic score of arm i)

» Pull arm
It =arg max Bjs:

i=1,...,

» Update the number of pulls 7}, , = T}, ;1 +1

. brezia~
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

The Upper—Confidence Bound (UCB) Algorithm (cont'd)

The score (with parameters p and ¢)

B; = (optimistic score of arm i)

A. LAZARIC — Multi—armed Bandit Problems April 2-15, 2012 -



Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

The Upper—Confidence Bound (UCB) Algorithm (cont'd)

The score (with parameters p and ¢)

Bi s.+ = (optimistic score of arm i if pulled s times up to round t)

. brezia~
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

The Upper—Confidence Bound (UCB) Algorithm (cont'd)

The score (with parameters p and ¢)

Bi s+ = (optimistic score of arm i if pulled s times up to round t)

Optimism in face of uncertainty:
Current knowledge: average rewards fi; s
Current uncertainty: number of pulls s

. Cbreia—
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

The Upper—Confidence Bound (UCB) Algorithm (cont'd)

The score (with parameters p and §)

Bis: = knowledge + uncertainty

optimism
Optimism in face of uncertainty:

Current knowledge: average rewards fi; s
Current uncertainty: number of pulls s

. Cbreia—
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

The Upper—Confidence Bound (UCB) Algorithm (cont'd)

The score (with parameters p and ¢)

log1/6
2s

Bi,s,t = ,&i,s +p
Optimism in face of uncertainty:

Current knowledge: average rewards [i; s
Current uncertainty: number of pulls s

. brezia~
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

The Upper—Confidence Bound (UCB) Algorithm (cont'd)

Do you remember Chernoff-Hoeffding?

Theorem

Let Xi,...,X, be iid. samples from a distribution bounded in
[a, b], then for any ¢ € (0,1)

P[‘%zn:Xt—E[Xl]‘ > (b—a)\/%l <
t=1

A. LAZARIC — Multi—armed Bandit Problems April 2-15, 2012 - 25/104



Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

The Upper—Confidence Bound (UCB) Algorithm (cont'd)

After s pulls, arm i

P

A. LAZARIC — Multi—armed Bandit Problems April 2-15, 2012



Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

The Upper—Confidence Bound (UCB) Algorithm (cont'd)

After s pulls, arm f

P >1-6

i < fij
i < His + e

Iogl/é]
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

The Upper—Confidence Bound (UCB) Algorithm (cont'd)

After s pulls, arm

P >1-9

i < fljs +

log1/6
2s

= UCB uses an upper confidence bound on the expectation

. brezia~
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

The Upper—Confidence Bound (UCB) Algorithm (cont'd)

For any set of N arms with distributions bounded in [0, b], if
d = 1/t, then UCB(p) with p > 1, achieves a regret

2
Rn(A) < Z [%plog(n) + A; (g == ﬁ)]

i£i* !
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

The Upper—Confidence Bound (UCB) Algorithm (cont'd)

Let N =2 with i* =1

RolA) < o(iplog(ro)

Remark 1: the cumulative regret slowly increases as log(n)
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

The Upper—Confidence Bound (UCB) Algorithm (cont'd)

Let N =2 with i* =1

RolA) < o(iplog(ro)

Remark 1: the cumulative regret slowly increases as log(n)
Remark 2: the smaller the gap the bigger the regret... why?
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

The Upper—Confidence Bound (UCB) Algorithm (cont'd)

Show time (again)!
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

The Worst—case Performance

Remark: the regret bound is distribution—dependent

R.(A; A) <O (ip Iog(n))

. brezia~
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

The Worst—case Performance

Remark: the regret bound is distribution—dependent

R.(A; A) <O (ip Iog(n))

Meaning: the algorithm is able to adapt to the specific problem at
hand!

. Cbreia—
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

The Worst—case Performance

Remark: the regret bound is distribution—dependent

R.(A; A) <O (ip Iog(n))

Meaning: the algorithm is able to adapt to the specific problem at
hand!

Worst—case performance: what is the distribution which leads to
the worst possible performance of UCB? what is the
distribution—free performance of UCB?

Rn(A) = szp Rn(A; A)

-
brzia—
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

The Worst—case Performance

Problem: it seems like if A — 0 then the regret tends to infinity...
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

The Worst—case Performance

Problem: it seems like if A — 0 then the regret tends to infinity...
. nosense because the regret is defined as

Rn(A; A) = E[To,]A

. Cbreia—
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

The Worst—case Performance

Problem: it seems like if A — 0 then the regret tends to infinity...
. nosense because the regret is defined as

Rn(A; A) = E[To,]A

then if A; is small, the regret is also small...

. Crzia—~
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

The Worst—case Performance

Problem: it seems like if A — 0 then the regret tends to infinity...
. nosense because the regret is defined as

Rn(A; A) = E[To,]A

then if A; is small, the regret is also small...
In fact

Rn(A; A) = min {O(iplog(n)) ,E[Tgm]A}
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

The Worst—case Performance

Then
Rn(A) = sup Rp(A; A) = sup min {O(lplog(n)) , nA} ~+/n
A A A

for A =+/1/n
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

Tuning the confidence 6 of UCB

Remark: UCB is an anytime algorithm (6 = 1/t)

R log t
Bi,s,t = ljs+p Tgs

. lrezia~
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

Tuning the confidence 6 of UCB

Remark: UCB is an anytime algorithm (6 = 1/t)

R log t
Bi,s,t = ljs+p 2gs
Remark: If the time horizon n is known then the optimal choice is
d=1/n
. log n
Bi,s,t = jlist+p 2%
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

Tuning the confidence § of UCB (cont'd)

Intuition: UCB should pull the suboptimal arms
> Enough: so as to understand which arm is the best

» Not too much: so as to keep the regret as small as possible

. Cbreia—
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

Tuning the confidence § of UCB (cont'd)

Intuition: UCB should pull the suboptimal arms

> Enough: so as to understand which arm is the best

» Not too much: so as to keep the regret as small as possible
The confidence 1 — § has the following impact (similar for p)

> Big 1 —§: high level of exploration

» Small 1 — 0: high level of exploitation
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

Tuning the confidence § of UCB (cont'd)

Intuition: UCB should pull the suboptimal arms

> Enough: so as to understand which arm is the best

» Not too much: so as to keep the regret as small as possible
The confidence 1 — § has the following impact (similar for p)

> Big 1 —§: high level of exploration

» Small 1 — 0: high level of exploitation

Solution: depending on the time horizon, we can tune how to
trade-off between exploration and exploitation

. Cbreia—
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

Tuning the confidence § of UCB (cont'd)

Let's dig into the (1 page and half!!) proof.

Define the (high-probability) event [statistics]

g_{v,-vs S,/'%W}
2s

By Chernoff-Hoeffding P[£] > 1 — nNJ.

ﬁi,s —
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

Tuning the confidence § of UCB (cont'd)

Let's dig into the (1 page and half!!) proof.

Define the (high-probability) event [statistics]

5={Vi,s g\/"’gm}
2s

By Chernoff-Hoeffding P[€] > 1 — nNé.
At time t we pull arm i [algorithm]

ﬂi,s — K

Bi17—i,t—1 > Bi*7Ti*,t—1
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

Tuning the confidence § of UCB (cont'd)

Let's dig into the (1 page and half!l) proof.

Define the (high-probability) event [statistics]

5—{Vi,5 . |og1/5}
2s

By Chernoff-Hoeffding P[E] > 1 — nNJ.
At time t we pull arm i [algorithm]

ﬁi,s — Wi

log1/é

N log1/6
:u‘l,Ti,t—l + 27—/,t71

2T 11

Z /I’\Li*ny*,t—l +
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

Tuning the confidence § of UCB (cont'd)

Let's dig into the (1 page and half!!) proof.

Define the (high-probability) event [statistics]

o {Ws . [l 1/5}
2s

By Chernoff-Hoeffding P[€] > 1 — nNé.
At time t we pull arm i [algorithm]

flis — Wi

N logl/6 _ . log1/§
iT > [ T
/‘l‘l,T:,t—l + 27—i,t—1 = /j’l 77_/*,t—1 + 2','[_*71’_1
On the event £ we have [math]
log1/é
M 2 > *
E (T
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

Tuning the confidence § of UCB (cont'd)

Assume t is the last time i is pulled, then T; , = T;:_1 + 1, thus

i+ 2
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

Tuning the confidence § of UCB (cont'd)

Assume t is the last time i is pulled, then T; , = T;:_1 + 1, thus

log1/6
AT,y =

log1/6
2A2
under event £ and thus with probability 1 — n/Né.

Reordering [math]

Tin < +1
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

Tuning the confidence § of UCB (cont'd)

Assume t is the last time i is pulled, then T; , = T;:_1 + 1, thus

log1/6
AT,y =

log1/6

2N?
under event £ and thus with probability 1 — n/Né.
Moving to the expectation [statistics|

Reordering [math]

Tin < +1

E[T;q] = E[T; 1 {E}] + E[T;,L {£°}]
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

Tuning the confidence § of UCB (cont'd)

Assume t is the last time i is pulled, then T; , = T;:_1 + 1, thus

log1/6
AT,y =

log1/6

2N?
under event £ and thus with probability 1 — n/Né.
Moving to the expectation [statistics|

Reordering [math]

Tin < +1

log1/¢

+ 1+ n(nNo)
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

Tuning the confidence § of UCB (cont'd)

Assume t is the last time i is pulled, then T; , = T;:_1 + 1, thus

log1/6
AT,y =

log1/6

2N?
under event £ and thus with probability 1 — n/Né.
Moving to the expectation [statistics|

Reordering [math]

Tin < +1

log1/¢
2N?
Trading-off the two terms § = 1/n?, we obtain

E[T:..] < + 1+ n(nNo)

R n 2logn
lu”aTi,t—l 27-’_71._1
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

Tuning the confidence § of UCB (cont'd)

Trading-off the two terms § = 1/n?, we obtain

. n 2logn
:U’hTi,t—l 27-’_71._1

and

log n
E[Tin] € 5 +1+N

1
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

Tuning the confidence § of UCB (cont'd)

Online learning: do you remember for the EWA(7)? The anytime
version is loosing only constants w.r.t. the fixed horizon tuning.

. Cbreia—
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

Tuning the confidence § of UCB (cont'd)

Online learning: do you remember for the EWA(7)? The anytime
version is loosing only constants w.r.t. the fixed horizon tuning.

Multi—armed Bandit: the same for § =1/t and § =1/n...

. Crzia—~
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

Tuning the confidence § of UCB (cont'd)

Online learning: do you remember for the EWA(7)? The anytime
version is loosing only constants w.r.t. the fixed horizon tuning.

Multi—armed Bandit: the same for § =1/t and § =1/n...
. almost (i.e., in expectation)
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

Tuning the confidence § of UCB (cont'd)

The value—at—risk of the regret for UCB-anytime

5000
|

4000

3000
1

Frequency
2000

1000
1

r T T T 1
0 1000 2000 3000 4000

Regret
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

Tuning the p of UCB (cont'd)
UCB values (for the 6 = 1/n algorithm)

logn
2s

Bi,s = /’li,s +p
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

Tuning the p of UCB (cont'd)
UCB values (for the 6 = 1/n algorithm)

logn
2s

Bis = flis+p
Theory
> p < 0.5, polynomial regret w.r.t. n
> p > 0.5, logarithmic regret w.r.t. n
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

Tuning the p of UCB (cont'd)
UCB values (for the 6 = 1/n algorithm)

logn
2s

Bi,s = /’li,s +p

Theory
> p < 0.5, polynomial regret w.r.t. n

> p > 0.5, logarithmic regret w.r.t. n

Practice: p = 0.2 is often the best choice
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

Tuning the p of UCB (cont'd)

UCB values (for the 6 = 1/n algorithm)

logn
Bis = flis+p
2s
Theory
> p < 0.5, polynomial regret w.r.t. n
> p > 0.5, logarithmic regret w.r.t. n
Practice: p = 0.2 is often the best choice
Regret of UCB1(p) for n = 1000 and K = 3 arms: Regret of UCB1(p) for n = 1000 and K = 5 arms:
" Ber(0.6), Ber(0.5) and Ber(0.5) Ber(0.7), Ber(0.6), Ber(0.5), Ber(0.4) and Ber(0.3)
45 : e 8
| [
0f e U
| —
B 36H T B
E”:ﬁn ‘J S",
s - s a0
£ 2w
g2 2.
£ &
10 2@
5 10
0.0 02 04 06 08 10 12 14 16 18 20 80 02 04 06 08 L0 12 14 16 18 20
Exploration parameter p Exploration parameter p
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

Improvements over UCB: UCB-V

Idea: use Bernstein bounds with empirical variance
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

Improvements over UCB: UCB-V

Idea: use Bernstein bounds with empirical variance

Algorithm:
log t ~D
Bist=flis +1\/ - Vv N 267 logt 8logt
i,s,t i,s 2s B,—757t = fiist :ss n -
1 o?
R, < O(Z log n) R, < O(K log n)
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

Improvements over UCB: KL-UCB

Idea: use Kullback—Leibler bounds which are tighter than other
bounds

A. LAZARIC — Multi-armed Bandit Problems



Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

Improvements over UCB: KL-UCB

Idea: use Kullback—Leibler bounds which are tighter than other

bounds
Algorithm: the algorithm is still index—based but a bit more
complicated
R<01| R<O<#Ion>
n—= (Z o8 n) n= KL(v,vi+) &
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

Improvements over UCB: Thompson strategy

Idea: Keep a distribution over the possible values of p;

. brezia~
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

Improvements over UCB: Thompson strategy

Idea: Keep a distribution over the possible values of p;
Algorithm: Bayesian approach. Compute the posterior
distributions given the samples.

K=10, e=0.02
4000

—— Thompson
3500(| ——UCB
— Asymptotic lower bound

3000

2500

2000

Regret

1500
1000

500
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

Back to UCB: the Lower Bound

For any stochastic bandit {v;}, any algorithm A has a regret

lim Ry > A
n—oo logn — inf, KL(v;,v)

. Cbreia—
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

Back to UCB: the Lower Bound

For any stochastic bandit {v;}, any algorithm A has a regret

lim Ry > A
n—oo logn — inf, KL(vi,v)

Problem: this is just asymptotic

. Crzia—~
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Bandits with Small Set of Arms ~ The Stochastic Multi—armed Bandit Problem

Back to UCB: the Lower Bound

Theorem

For any stochastic bandit {v;}, any algorithm A has a regret

lim Ry > A
n—oo logn — inf, KL(v;,v)

Problem: this is just asymptotic
Open Question: what is the finite-time lower bound?

. Crzia—~
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Bandits with Small Set of Arms ~ The Non—Stochastic Multi-armed Bandit Problem

Outline

Bandits with Small Set of Arms
The Stochastic Multi-armed Bandit Problem
The Non—Stochastic Multi-armed Bandit Problem
Connections to Game Theory
Other Stochastic Multi-armed Bandit Problems

Bandits with Large Set of Arms

Conclusions

. Cbreia—
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Bandits with Small Set of Arms ~ The Non—Stochastic Multi-armed Bandit Problem

The Non-Stochastic Multi—armed Bandit Problem

The environment is adversarial
» Arms have no fixed distribution

» The rewards X;; are arbitrarily chosen by the environment
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Bandits with Small Set of Arms ~ The Non—Stochastic Multi-armed Bandit Problem

The Non—Stochastic Multi—-armed Bandit Problem (cont’d)

The (non-stochastic bandit) regret

R,(A) = i_r’?axNIE[zn:X,-’t} — E[zn:Xlt,t]
=1 t=1
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Bandits with Small Set of Arms ~ The Non—Stochastic Multi-armed Bandit Problem

The Non—Stochastic Multi—-armed Bandit Problem (cont’d)

The (non—stochastic bandit) regret

n

Rn(A) = max Xit— ]E[Zn:xlt,t}
t=1

t=1
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Bandits with Small Set of Arms ~ The Non—Stochastic Multi-armed Bandit Problem

The Non—Stochastic Multi—-armed Bandit Problem (cont’d)

The (non-stochastic bandit) regret

n

R.(A) = max Xit — [let,t}
T =1 t=1

The online learning regret for discrete prediction

n

Ro(A) = [Zﬁ fiesy)] = min 3 Ufiz o)
t=1

1<i<N

. Cbreia—
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Bandits with Small Set of Arms ~ The Non—Stochastic Multi-armed Bandit Problem

The Non—Stochastic Multi—-armed Bandit Problem (cont’d)

The (non-stochastic bandit) regret

n n
Rold) = x> e — B[ 3 Xi
t=1 t=1
The online learning regret for discrete prediction
n
Rn(A) = [ZE fl.,t> Yt } - m:gN £ U(fi e, ye)

they look very similar...
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Bandits with Small Set of Arms ~ The Non—Stochastic Multi-armed Bandit Problem

The Exponentially Weighted Average Forecaster

Initialize the weights w;o =1

» Compute (W;_; = Z,Nzl Wit-1)

Pir = Wi t—1

it Wt—l
» Choose the expert at random
Iy ~ I3t
> Predict f}, ¢
» Observe y;
> Suffer a loss £(f},, y:)
> Update
wie = wie—1exp (—nl(i, ye))
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Bandits with Small Set of Arms ~ The Non—Stochastic Multi-armed Bandit Problem

The Non—Stochastic Multi—-armed Bandit Problem (cont’d)

Adjusting for the differences:

» From experts f; ; to arms (i.e., fi; =i for any t)
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Bandits with Small Set of Arms ~ The Non—Stochastic Multi-armed Bandit Problem

The Exponentially Weighted Average Forecaster

Initialize the weights w;o =1

» Compute (W1 = SN wi; 1)

f)' _ Wi t—1

it Wtfl
» Choose the arm at random
Iy ~ ﬁt
» Observe y;
> Suffer a loss (1, y:)
» Update
Wit = Wi t—1€Xp ( - nf(i,yt))

. Cbreia—
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Bandits with Small Set of Arms ~ The Non—Stochastic Multi-armed Bandit Problem

The Non—Stochastic Multi—-armed Bandit Problem (cont’d)

Adjusting for the differences:

» From experts f;; to arms (i.e., f; = i for any t)

» From the label y; and the loss (-, y;) to the loss vector
{£it}1) with
gi,t - f(/a)/t)
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Bandits with Small Set of Arms ~ The Non—Stochastic Multi-armed Bandit Problem

The Exponentially Weighted Average Forecaster

Initialize the weights w;o =1

» Compute (Wi_1 = Z:{V:I Wi 1)
Wi t—1

W;i_1

Pi,t =

v

Choose the arm at random

/tNﬁt

v

Observe the losses {/; ;}

v

Suffer a loss ¢}, ¢

v

Update
Wit = Wi t—1€Xp ( - Ufir-t)

. Cbreia—
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Bandits with Small Set of Arms ~ The Non—Stochastic Multi-armed Bandit Problem

The Non—Stochastic Multi—-armed Bandit Problem (cont’d)

Adjusting for the differences:

» From experts f;; to arms (i.e., f; = i for any t)

» From the label y; and the loss ¢(-, y;) to the reward vector
X; N
{ ’7t}I:1

> From losses to rewards

. brezia~
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Bandits with Small Set of Arms ~ The Non—Stochastic Multi-armed Bandit Problem

The Exponentially Weighted Average Forecaster

Initialize the weights w;o =1
N
» Compute (W1 = >0, Wie—1)
Pir = Wit—1
it Wt—l
» Choose the arm at random
Iy ~ ﬁt
> Observe the rewards {X; ,}
> Receive a reward X, ;
» Update
Wit = Wi t—1€Xp ( + nXit,t)

. Cbreia—
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Bandits with Small Set of Arms ~ The Non—Stochastic Multi-armed Bandit Problem

The Non—Stochastic Multi—-armed Bandit Problem (cont’d)

Adjusting for the differences:

» From experts f; ; to arms (i.e., fi; =i for any t)

» From the label y; and the loss £(-, y+) to the reward vector
{Xie}
Ltfi=1
» From losses to rewards

Problem: we only observe the reward of the specific arm chosen at
time t!! (i.e., only X}, ; is observed)

. Crzia—~
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Bandits with Small Set of Arms ~ The Non—Stochastic Multi-armed Bandit Problem

The Exponentially Weighted Average Forecaster

Initialize the weights w;o =1

» Compute (W;_; = Z,N:1 Wit—1)

Pis = Wi t—1
it = T,
Wi
» Choose the arm at random
It ~ ﬁt

v

Receive a reward Xj, ;

v

Update

wi,e = wi¢—1exp (nX;, ) = this update is not possible
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Bandits with Small Set of Arms ~ The Non—Stochastic Multi-armed Bandit Problem

The Non—Stochastic Multi—-armed Bandit Problem (cont’d)

We use the importance weight trick

. Xie if j— |,
Xit = g"t

otherwise
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Bandits with Small Set of Arms ~ The Non—Stochastic Multi-armed Bandit Problem

The Non—Stochastic Multi—-armed Bandit Problem (cont’d)

We use the importance weight trick

. Xie if j— |,
Xf7t — Pi,t ‘
0 otherwise

Why it is a good idea:

o Xit o R
E[Xi,t] = 3 ’tPi,t +0(1—pit) = Xit

Pit

A

Xi.¢+ is an unbiased estimator of X; ;

. brezia~
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Bandits with Small Set of Arms ~ The Non—Stochastic Multi-armed Bandit Problem

The Exp3 Algorithm

Exp3: Exponential-weight algorithm for Exploration and Exploitation

Initialize the weights w; o =1

> Compute (W1 = Z,N:1 Wit—1)

Pis = Wi t—1
it = T
Wt—l
» Choose the arm at random
It ~ ﬁt

> Receive a reward X, .

> Update

A

Wi = wie_1exp (nXi. )

ZARIC — Multi—armed Bandit Problems



Bandits with Small Set of Arms ~ The Non—Stochastic Multi-armed Bandit Problem

The Exp3 Algorithm

Question: is this enough? is this algorithm actually exploring
enough?
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Bandits with Small Set of Arms ~ The Non—Stochastic Multi-armed Bandit Problem

The Exp3 Algorithm

Question: is this enough? is this algorithm actually exploring
enough?
Answer: more or less...

» Exp3 has a small regret in expectation

» Exp3 might have large deviations with high probability (ie,
from time to time it may concentrate p: on the wrong arm for
too long and then incur a large regret)

-
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Bandits with Small Set of Arms ~ The Non—Stochastic Multi-armed Bandit Problem

The Exp3 Algorithm

Fix: add some extra uniform exploration

Initialize the weights w; o =1

> Compute (W1 = Z,N:1 Wit—1)

A~ Wi t—1 Y
: = 1 — —
Pie === Wy K
» Choose the arm at random
Iy ~ ﬁt

> Receive a reward X, .

> Update

A

Wi = wie_1exp (nXi. )

. Crzia—~
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Bandits with Small Set of Arms ~ The Non—Stochastic Multi-armed Bandit Problem

The Exp3 Algorithm

Theorem

If Exp3 is run with v = 1), then it achieves a regret
. . N log N
Rn(-A) = i—T,.a.?fN;Xi’t — E[;Xlt,t} < (e — 1)'}’Gma>< aF T

o n
With Gmax = maxj=1,..N D11 Xit-
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Bandits with Small Set of Arms ~ The Non—Stochastic Multi-armed Bandit Problem

The Exp3 Algorithm

Theorem

If Exp3 is run with

[ NlogN
7= (e—1)n

then it achieves a regret

Rn(A) < O(1/nNlog N)

. brezia~
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Bandits with Small Set of Arms ~ The Non—Stochastic Multi-armed Bandit Problem

The Exp3 Algorithm

Comparison with online learning

Rn(Exp3) < O(+/nNlog N)

R,(EWA) < O(y/nlog N)
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Bandits with Small Set of Arms ~ The Non—Stochastic Multi-armed Bandit Problem

The Exp3 Algorithm

Comparison with online learning

Rn(Exp3) < O(+/nNlog N)

R,(EWA) < O(y/nlog N)

Intuition: in online learning at each round we obtain N feedbacks,
while in bandits we receive 1 feedback.

. Cbreia—

A. LAZARIC — Multi-armed Bandit Problems



Bandits with Small Set of Arms ~ The Non—Stochastic Multi-armed Bandit Problem

The Improved-Exp3 Algorithm

Initialize the weights w;o =1
N
» Compute (We—1 =", wje—1)
N Wi t—1 Y
o= (1 — ~)—= s
pl,t ( /) Wt_l + K
» Choose the arm at random
Iy ~ ﬁt
> Receive a reward X, ;
» Compute
v s B
Xit = Xit + 3
Pit
» Update B
Wit = Wi t—1€Xp (77Xit.t)
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Bandits with Small Set of Arms ~ The Non—Stochastic Multi-armed Bandit Problem

The Improved-Exp3 Algorithm

If Improved-Exp3 is run with parameters in the ranges

1 y 1 N
< —: <n< —: — — < <1
vS3 0smsom oyl <fs

then it achieves a regret

RYF(A) < n(y+n(1 + B)N) +

with probability at least 1 — .
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Bandits with Small Set of Arms ~ The Non—Stochastic Multi-armed Bandit Problem

The Improved-Exp3 Algorithm

If Improved-Exp3 is run with parameters in the ranges

N ANS ~

lo =_L
og =i 7 7

p= BEEYA 2N

nN

then it achieves a regret

RHP(A) < % nN1og(N/3) + '°g2N

with probability at least 1 — .

. brezia~
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Bandits with Small Set of Arms Connections to Game Theory

Outline

Bandits with Small Set of Arms
The Stochastic Multi-armed Bandit Problem
The Non—Stochastic Multi-armed Bandit Problem
Connections to Game Theory
Other Stochastic Multi-armed Bandit Problems

Bandits with Large Set of Arms

Conclusions

. Cbreia—
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Bandits with Small Set of Arms Connections to Game Theory

Repeated Two—Player Zero-Sum Games

A two—player zero—sum game

A B C
1130, -30 | -10, 10 | 20, -20
2| 10,-10 | -20, 20 | -20, 20

. brezia~
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Bandits with Small Set of Arms Connections to Game Theory

Repeated Two—Player Zero-Sum Games

A two—player zero—sum game

A B C
11 30,-30 | -10, 10 | 20, -20
10, -10 | -20, 20 | -20, 20

Nash equilibrium:
A set of strategies is a Nash equilibrium if no player can do better by
unilaterally changing his strategy.

. Cbreia—
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Bandits with Small Set of Arms Connections to Game Theory

Repeated Two—Player Zero-Sum Games

A two—player zero—sum game

A B C
1] 30,-30 | -10, 10 | 20, -20
10, -10 | -20, 20 | -20, 20

Nash equilibrium:

Red: take action I with prob. 4/7 and action 2 with prob. 3/7

Blue: take action A with prob. 0, action B with prob. 4/7, and action C
with prob. 3/7

. brezia~
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Bandits with Small Set of Arms Connections to Game Theory

Repeated Two—Player Zero-Sum Games

A two—player zero—sum game

A B C
11 30,-30 | -10, 10 | 20, -20
2| 10,-10 | -20, 20 | -20, 20

Nash equilibrium:
Value of the game: V = 20/7 (reward of Red at the equilibrium)
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Bandits with Small Set of Arms Connections to Game Theory

Repeated Two—Player Zero-Sum Games

At each round t
> Row player computes a mixed strategy p: = (P1,es---, Pn,t)

> Column player computes a mixed strategy q; = (G1,¢,- .-, dm.t)
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Bandits with Small Set of Arms Connections to Game Theory

Repeated Two—Player Zero-Sum Games

At each round t

> Row player computes a mixed strategy p: = (P1,es---, Pn,t)

> Column player computes a mixed strategy q; = (G1,¢,- .-, dm.t)
> Row player selects action I, € {1,..., N}

> Column player selects action J; € {1,..., M}

. Cbreia—
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Bandits with Small Set of Arms Connections to Game Theory

Repeated Two—Player Zero-Sum Games

At each round t

> Row player computes a mixed strategy p: = (P1,es---, Pn,t)

> Column player computes a mixed strategy q; = (G1,¢,- .-, dm.t)
> Row player selects action I, € {1,..., N}

> Column player selects action J; € {1,..., M}

> Row player suffers ¢(1y, J;)
> Column player suffers —¢(1;, J;)

. Crzia—~
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Bandits with Small Set of Arms Connections to Game Theory

Repeated Two—Player Zero-Sum Games

At each round t

>

>

>

>

>

>

Row player computes a mixed strategy p: = (P1.t,- - -, Pw,t)
Column player computes a mixed strategy G: = (G1,¢,- .-, qm,t)
Row player selects action I € {1,..., N}

Column player selects action J; € {1,..., M}

Row player suffers ¢(1y, J;)

Column player suffers —¢(1;, J;)

Value of the game

with

. Clreia—

V = maxmin {(p,q)
a P

i N M
/p,q) = Z Z piq;¢(i,J)

i=1 j=1
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Bandits with Small Set of Arms Connections to Game Theory

Repeated Two—Player Zero-Sum Games

Question: what if the two players are both bandit algorithms
(e.g., Exp3)?
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Bandits with Small Set of Arms Connections to Game Theory

Repeated Two—Player Zero-Sum Games

Question: what if the two players are both bandit algorithms

(e.g., Exp3)?
Row player: a bandit algorithm is able to minimize

n
(row) E 17 min E 4
et T i=1,...,N — iJt

. Crzia—~
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Bandits with Small Set of Arms Connections to Game Theory

Repeated Two—Player Zero-Sum Games

Question: what if the two players are both bandit algorithms
(e.g., Exp3)?
Row player: a bandit algorithm is able to minimize

n
(row) E 17 min E 4
et T i=1,...,N — iJt

Col player: a bandit algorithm is able to minimize

n
CO| E é,t,Jt jm ,.I.r.],M E glt,j
t=1

. Cbreia—
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Bandits with Small Set of Arms Connections to Game Theory

Repeated Two—Player Zero-Sum Games

If both the row and column players play according to an
Hannan-consistent strategy, then

1 n
lim sup —Zﬂ(lt,Jt) =V
t=1

n—oo N “—

. Crzia—~
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Bandits with Small Set of Arms Connections to Game Theory

Repeated Two—Player Zero-Sum Games

Theorem

The empirical distribution of plays

. 1< 4. 1< .
pi,n:;;]l{lt:’} qj,n:;;H{Jt:J}

induces a product distribution p, X §, which converges to the set
of Nash equilibria p X q.

. Cbreia—
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Bandits with Small Set of Arms Connections to Game Theory

Repeated Two—Player Zero-Sum Games
Proof idea.

Since £(p, J;) is linear, over the simplex, the minimum is at one of the
corners [math]

1. i
min N ;E(th) = min — ;E(p,Jt)

. bezia~
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Bandits with Small Set of Arms Connections to Game Theory

Repeated Two—Player Zero-Sum Games
Proof idea.

Since £(p, J;) is linear, over the simplex, the minimum is at one of the
corners [math]

N N 1<
min g 2 ) = min > H(p. )
t=1 t=1
We consider the empirical probability of the row player [def]

N 1< )
Gjn = E;H{Jt =j}

. Cbreia—
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Bandits with Small Set of Arms Connections to Game Theory

Repeated Two—Player Zero-Sum Games
Proof idea.

Since £(p, J;) is linear, over the simplex, the minimum is at one of the
corners [math]

N N 1 -
min N ZE(/7 Jy) = min — Zf(p, Ji)
t=1 t=1
We consider the empirical probability of the row player [def]
A 1o .
Gn="— I{h=J}
t=1
Elaborating on it [math]
1 n_ M _
min — Zf(p, J¢) = min Z Gj.nl(p.J)
PN P
- m'”Z(Pvfln)
p
< maxmin/(p,q) = V
a p

. Crzia—~
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Bandits with Small Set of Arms Connections to Game Theory

Repeated Two—Player Zero-Sum Games

Proof idea.
By definition of Hannan's consistent strategy [def]

lim sup 725 I, Je) = mln ZE ,Jt)

n— o0

. brezia~
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Bandits with Small Set of Arms Connections to Game Theory

Repeated Two—Player Zero-Sum Games

Proof idea.
By definition of Hannan's consistent strategy [def]

lim sup 725 I, Je) = mln ZE ,Jt)

n— o0

Then
lim sup 725 Iy, Jy) <

n— 00
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Bandits with Small Set of Arms Connections to Game Theory

Repeated Two—Player Zero-Sum Games

Proof idea.
By definition of Hannan's consistent strategy [def]

lim sup 725 I, Je) = mln ZE ,Jt)

n— o0

Then
lim sup 728 Iy, Jy) <

n— 00

If we do the same for the other player [zero—sum game]

lim sup 725 Iy, Je) >

n— o0 =1

. Clreia—
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Bandits with Small Set of Arms Connections to Game Theory

Repeated Two—Player Zero-Sum Games

Question: how fast do they converge to the Nash equilibrium?

. brezia~
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Bandits with Small Set of Arms Connections to Game Theory

Repeated Two—Player Zero-Sum Games

Question: how fast do they converge to the Nash equilibrium?
Answer: it depends on the specific algorithm. For EWA(7), we
now that

. . . logN n n 1
;E(Iu-/t)—i_TTNZz(’,Jt)S i + 20y §|0g*

. Crzia—~
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Bandits with Small Set of Arms Connections to Game Theory

Repeated Two—Player Zero-Sum Games

Generality of the results

» Players do not know the payoff matrix

. brezia~
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Bandits with Small Set of Arms Connections to Game Theory

Repeated Two—Player Zero-Sum Games

Generality of the results
» Players do not know the payoff matrix

» Players do not observe the loss of the other player
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Bandits with Small Set of Arms Connections to Game Theory

Repeated Two—Player Zero-Sum Games

Generality of the results
» Players do not know the payoff matrix
» Players do not observe the loss of the other player

» Players do not even observe the action of the other player

. Cbreia—
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Bandits with Small Set of Arms Connections to Game Theory

Internal Regret and Correlated Equilibria

External (expected) regret

Rn = Zz(ﬁty}/t) - inNZE("»Yt)
t=1 T =1

n N
= maxN Z Z ﬁj,t(f(j, y) — (i, yt))

i=1,..., X
t=1 j=1

. brezia~
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Bandits with Small Set of Arms Connections to Game Theory

Internal Regret and Correlated Equilibria

External (expected) regret

Rn = Zz(ﬁtv}/t) i m|n Zf i yt)
=  Mmax Zzpjt g(f yt (”)/t))

=1 N 4

Internal (expected) regret

= max ij, (i,ye) — G, ve))

ij=1,...N
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Bandits with Small Set of Arms Connections to Game Theory

Internal Regret and Correlated Equilibria

Internal (expected) regret
R = m — £
i laX E pj, t (i, ye) (]7)/1'))

Intuition: an algorithm has small internal regret if, for each pair of
experts (i, ), the learner does not regret of not having followed
expert j each time it followed expert i.

. Crzia—~
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Bandits with Small Set of Arms Connections to Game Theory

Internal Regret and Correlated Equilibria

Theorem

Given a K—person game with a set of correlated equilibria C. If all
the players are internal-regret minimizers, then the distance
between the empirical distribution of plays and the set of
correlated equilibria C converges to O.

. Crzia—~
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Bandits with Small Set of Arms Connections to Game Theory

Nash Equilibria in Extensive Form Games

A powerful model for sequential games
Checkers / Chess / Go
Poker

» Bargaining

v

v

v

Monitoring

v

Patrolling

. brezia~
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Bandits with Small Set of Arms Connections to Game Theory

Nash Equilibria in Extensive Form Games
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Bandits with Small Set of Arms Connections to Game Theory

Nash Equilibria in Extensive Form Games
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Bandits with Small Set of Arms Connections to Game Theory

Nash Equilibria in Extensive Form Games

No details about the algorithm... but...

. brezia~

A. LAZARIC — Multi-armed Bandit Problems



Bandits with Small Set of Arms Connections to Game Theory

Nash Equilibria in Extensive Form Games

No details about the algorithm... but...

If player k selects actions according to the counterfactual regret
minimization algorithm, then it achieves a regret

actions
Ri, 7 < # statesy/ —# T

. Cbreia—
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Bandits with Small Set of Arms Connections to Game Theory

Nash Equilibria in Extensive Form Games

No details about the algorithm... but...

If player k selects actions according to the counterfactual regret
minimization algorithm, then it achieves a regret

actions
Ri, 7 < # statesy/ —# T

In a two—player zero—sum extensive form game, counterfactual
regret minimization algorithms achieves an 2e-Nash equilibrium,

with
| # actions
€ < # states #T

Theorem
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Bandits with Small Set of Arms Other Stochastic Multi-armed Bandit Problems

Outline

Bandits with Small Set of Arms
The Stochastic Multi-armed Bandit Problem
The Non—Stochastic Multi-armed Bandit Problem
Connections to Game Theory
Other Stochastic Multi-armed Bandit Problems

Bandits with Large Set of Arms

Conclusions
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Bandits with Small Set of Arms Other Stochastic Multi-armed Bandit Problems

The Best Arm Identification Problem

Motivating Examples

» Find the best shortest path in a limited number of days

» Maximize the confidence about the best treatment after a
finite number of patients

» Discover the best advertisements after a training phase

> ...
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Bandits with Small Set of Arms Other Stochastic Multi-armed Bandit Problems

The Best Arm Identification Problem

Objective: given a fixed budget n, return the best arm
i* = arg max; u; at the end of the experiment

. brezia~
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Bandits with Small Set of Arms Other Stochastic Multi-armed Bandit Problems

The Best Arm Identification Problem

Objective: given a fixed budget n, return the best arm
i* = argmax; p; at the end of the experiment
Measure of performance: the probability of error

N
P[J, # ] < Zexp ( — T,-,nA,?)

i=1
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Bandits with Small Set of Arms Other Stochastic Multi-armed Bandit Problems

The Best Arm Identification Problem

Objective: given a fixed budget n, return the best arm
i* = arg max; u; at the end of the experiment
Measure of performance: the probability of error

N
Plon # i1 <Y exp (= Tinld?)
i=1

Algorithm idea: mimic the behavior of the optimal strategy

1
A?
Ti n— :

— N
) N 1
S

. Cbreia—
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Bandits with Small Set of Arms Other Stochastic Multi-armed Bandit Problems

The Best Arm Identification Problem
The Successive Reject Algorithm
> Divide the budget in N — 1 phases. Define
(log(N) = 0.5+ 3N ,1/i)
1 n—N
KT TogK N+ 1—k

n
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Bandits with Small Set of Arms Other Stochastic Multi-armed Bandit Problems

The Best Arm Identification Problem
The Successive Reject Algorithm
> Divide the budget in N — 1 phases. Define
(log(N) = 0.5+ 3N ,1/i)

1 n—N
KT TogK N+ 1—k

n

> Set of active arms Ay at phase k (A1 ={1,...,N})
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Bandits with Small Set of Arms Other Stochastic Multi-armed Bandit Problems

The Best Arm Identification Problem
The Successive Reject Algorithm
> Divide the budget in N — 1 phases. Define
(log(N) = 0.5+ 3N ,1/i)

1 n—N
KT TogK N+ 1—k

n

> Set of active arms Ay at phase k (A1 ={1,...,N})
» For each phase k=1,...,N —1

» For each arm j € A, pull arm i for nx — nx_1 rounds

-
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Bandits with Small Set of Arms Other Stochastic Multi-armed Bandit Problems

The Best Arm Identification Problem
The Successive Reject Algorithm
> Divide the budget in N — 1 phases. Define
(log(N) = 0.5+ 3N ,1/i)

1 n—N
KT TogK N+ 1—k

n

> Set of active arms Ay at phase k (A1 ={1,...,N})
» For each phase k=1,...,N —1

» For each arm j € A, pull arm i for nx — nx_1 rounds
» Remove the worst arm

Aks1 = Ai\ arg min fij n,
€A

-
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Bandits with Small Set of Arms Other Stochastic Multi-armed Bandit Problems

The Best Arm Identification Problem
The Successive Reject Algorithm
> Divide the budget in N — 1 phases. Define
(log(N) = 0.5+ 3N ,1/i)
1 n—N
KT TogK N+ 1—k

n

> Set of active arms Ay at phase k (A1 ={1,...,N})
» For each phase k=1,...,N —1

» For each arm j € A, pull arm i for nx — nx_1 rounds
» Remove the worst arm

Aks1 = Ai\ arg min fij n,
€A

> Return the only remaining arm J, = Ap

. Clreia—
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Bandits with Small Set of Arms Other Stochastic Multi-armed Bandit Problems

The Best Arm Identification Problem

The Successive Reject Algorithm

Theorem

The successive reject algorithm have a probability of doing a
mistake of

o K(K-1) n—N
PlJ, # "] < Texp(—@NH)

with Hy = max;—1._n iAa)Q.
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Bandits with Small Set of Arms Other Stochastic Multi-armed Bandit Problems

The Best Arm Identification Problem

The UCB-E Algorithm

» Define an exploration parameter a

. a
Bi,s = ljs+ \/:

» Compute

. brezia~
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Bandits with Small Set of Arms Other Stochastic Multi-armed Bandit Problems

The Best Arm Identification Problem

The UCB-E Algorithm

» Define an exploration parameter a

» Compute
a
Bis=[ijs+4/—
i,s = Mis \/:

» Select

It = arg max

i,s

-
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Bandits with Small Set of Arms Other Stochastic Multi-armed Bandit Problems

The Best Arm Identification Problem

The UCB-E Algorithm

» Define an exploration parameter a

» Compute

Bis = /I«Zi,s +

)

» Select

» At the end return

Jn = argmax fi; T, ,
1

. brezia~
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Bandits with Small Set of Arms Other Stochastic Multi-armed Bandit Problems

The Best Arm Identification Problem

The UCB-E Algorithm

Theorem

The UCB-E algorithm with a = g—g ”ﬁl’v has a probability of doing a
mistake of

P[Jn # i*] < 2nN exp ( - 2—;)

with Hy = SN 1/A2,

. brezia~
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Bandits with Small Set of Arms Other Stochastic Multi-armed Bandit Problems

The Best Arm Identification Problem

Experiment 1, n=2000 Experiment 7, n=12000
035
03 - 5:SR
6-9: UCB-E

e . Y 10-14: Ad UCB-E|
g S 025
o o
-
o B o2
2 2
= =
8 8o
S 8 I
o o o1

0.05 )

12 3 4 5 6 7 8 9 10 11 12 13 14 12 3 4 5 6 7 8 9 10 11 12 18 14

Problems 5, 2012 - 91/10



Bandits with Small Set of Arms Other Stochastic Multi-armed Bandit Problems

The Active Bandit Problem

Motivating Examples

» N production lines

» The test of the performance of a line is expensive

» We want an accurate estimation of the performance of each
production line
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Bandits with Small Set of Arms Other Stochastic Multi-armed Bandit Problems

The Active Bandit Problem

Objective: given a fixed budget n, return the an estimate of the
means fi;  which is as accurate as possible for all the arms
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Bandits with Small Set of Arms Other Stochastic Multi-armed Bandit Problems

The Active Bandit Problem

Objective: given a fixed budget n, return the an estimate of the
means fi;  which is as accurate as possible for all the arms

Notice: Given an arm has a mean y; and a variance a,-2, if it is
pulled T; , times, then

Lin=E[(fi1,, — mi)’] = =
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Bandits with Small Set of Arms Other Stochastic Multi-armed Bandit Problems

The Active Bandit Problem

Objective: given a fixed budget n, return the an estimate of the
means fi;  which is as accurate as possible for all the arms

Notice: Given an arm has a mean y; and a variance a,-2, if it is
pulled T; , times, then

Lin=E[(fi1,, — mi)’] = =

L, = maxL;,
1
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Bandits with Small Set of Arms Other Stochastic Multi-armed Bandit Problems

The Active Bandit Problem

Problem: what are the number of pulls (T1,,..., Tn,n) (such
that ) T; , = n) which minimizes the loss?

(Tl*’,,, . T,’\‘,,n) = argmin L,
(Tl,n7-~~7TN,n)
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The Active Bandit Problem

Problem: what are the number of pulls (T1,,..., Tn,n) (such
that ) T; , = n) which minimizes the loss?

(Tl*’,,, . T,’\‘,,n) = argmin L,
(Tl,n7-~~7TN,n)

Answer
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The Active Bandit Problem

Problem: what are the number of pulls (T1,,..., Tn,n) (such
that ) T; , = n) which minimizes the loss?

(Tl*’,,, . T,’\‘,,n) = argmin L,
(Tl,n7-~~7TN,n)

Answer

ZARIC — Multi—armed Bandit Problems



Bandits with Small Set of Arms Other Stochastic Multi-armed Bandit Problems

The Active Bandit Problem

Objective: given a fixed budget n, return the an estimate of the
means [i;  which is as accurate as possible for all the arms
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Bandits with Small Set of Arms Other Stochastic Multi-armed Bandit Problems

The Active Bandit Problem

Objective: given a fixed budget n, return the an estimate of the
means [i;  which is as accurate as possible for all the arms
Measure of performance: the regret on the quadratic error
N 2
19

R.(A) = max L,(A) — im0

n
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Bandits with Small Set of Arms Other Stochastic Multi-armed Bandit Problems

The Active Bandit Problem

Objective: given a fixed budget n, return the an estimate of the
means [i;  which is as accurate as possible for all the arms
Measure of performance: the regret on the quadratic error

N 2
Ro(A) = max Ly(A) — 2==L1

n
Algorithm idea: mimic the behavior of the optimal strategy

2

ag;
Ti’n = N72n = )\in
j=19j

. brezia~
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Bandits with Small Set of Arms Other Stochastic Multi-armed Bandit Problems

The Active Bandit Problem

An UCB-based strategy
At each timestept=1,...,n

» Estimate
1 Tit—1
) _ 2 )
OiTie1 — Tit1 Z XSJ LT
I,t— s—1
» Compute
1
B, t — ((/7\'2
’ I,T‘ —
Tit-1 bt
» Pull arm

. Cbreia—
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Bandits with Small Set of Arms Other Stochastic Multi-armed Bandit Problems

The Active Bandit Problem

The UCB-based algorithm achieves a regret

Ro(A) < 28180, o<'°g”>

~ p3/2)5/2 n?

min

. Crzia—~
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Bandits with Small Set of Arms Other Stochastic Multi-armed Bandit Problems

The Active Bandit Problem

The UCB-based algorithm achieves a regret

Ro(A) < 281080, o<'°g”>

= 13/2)5/2 n?
n / )‘min

. Crzia—~
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Bandits with Large Set of Arms

Outline

Bandits with Small Set of Arms

Bandits with Large Set of Arms
Many—armed Bandits

Conclusions
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Bandits with Large Set of Arms Many—armed Bandits

Outline

Bandits with Small Set of Arms

Bandits with Large Set of Arms
Many—armed Bandits

Conclusions
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Bandits with Large Set of Arms Many—armed Bandits

See https://sites.google.com/site/banditstutorial/

rmed Bandit Problems


https://sites.google.com/site/banditstutorial/

Conclusions

Outline

Bandits with Small Set of Arms
Bandits with Large Set of Arms

Conclusions
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Conclusions

Other Bandit Settings

» Non-stationary stochastic bandits
» Bandits with costs

» Bandits for ranking

» Bandit with strategic constraints
» Risk—averse bandits

» Contextual bandit

» Reinforcement learning
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Conclusions

Things to Remember

» Learning when the feedback is limited
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Conclusions

Things to Remember

» Learning when the feedback is limited

» The multi—-armed bandit model is about trading-off between
information and performance
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Conclusions

Things to Remember

» Learning when the feedback is limited

» The multi—-armed bandit model is about trading-off between
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» Learning when the feedback is limited

» The multi—-armed bandit model is about trading-off between
information and performance

» There exist strategies to solve the multi-armed bandit
problem in both the stochastic and adversarial setting

» Bandit algorithms have strong connections to game theory

» When infinite arms are available, bandit problems show a
strong connection with stochastic optimization
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